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Executive Summary 

Transitioning to a sustainable energy society and mitigating climate change effects through 

accelerated energy sector decarbonization is a recognised top priority of the European Union 

(EU) under the recent European Green Deal (EGD). Artificial intelligence (AI) is a key enabling 

technology towards an optimally managed renewable-powered energy sector. The aim of the 

proposed project was to examine the capabilities of next-generation AI-driven grid-supportive 

tools that facilitate the dynamic and cost-effective management of microgrids at high shares of 

solar photovoltaics (PV). Specifically, the project focused on the development and accelerated 

validation of a data-driven voltage state estimator and a grid condition prognostic platform (dig-

ital twin) that includes a net-load forecasting model. The activities further entailed the validation 

of the proposed tools' while coupled to grid supportive controls demonstrated through real-time 

simulation environments ad control hardware-in-the-loop simulations. To this end, the pro-

posed project is timely pertinent by offering a real-time simulation framework for experimentally 

validating smart grid analytical tools and demonstrating AI-driven applications (voltage state 

estimation and net-load forecasting). 

The project was performed cooperatively, in two phases:  

• A first physical stay of staff members of University of Cyprus was held at AIT Austrian 

Institute of Technology at the SmartEST Laboratory in Vienna, Austria. 

• A second physical stay was performed 2 weeks later by AIT staff members at University 

of Cyprus in Nicosia at the Low Voltage Experimental Microgrid Lab, Cyprus to imple-

ment the developed methods on site.   

In the scope of this work, the test system considered for the real-time simulations and the 

actual site demonstration is the low-voltage (LV) Experimental Nanogrid of UCY-FOSS and 

the Smart Energy Campus microgrid of UCY. The nanogrid pilot is a flexible and scalable 

renewable to grid integration infrastructure that includes PV systems, smart inverters, battery 

storage, smart loads/plugs, smart meters, IoT communication devices and a central energy 

management system. Along this context, the Smart Energy Campus is a commercial-scale 

University campus microgrid that comprises of 15 smart buildings and distributed PV systems 

of capacity 400 kW that are fully monitored and equipped with smart meters as part of the 

implemented advanced metering infrastructure (AMI) for the acquisition of high-resolution data. 

Three test cases were designed for the project:  

• Test Case 1 [AIT]: Voltage state estimation tool development and validation for utility-

scale microgrids (developed and provided by the applicants) at real-time environments. 

• Test Case 2 [AIT]: Short-term net-load forecasting voltage regulation tool development 

and validation for utility-scale microgrids (developed and provided by the applicants) at 

real-time environments. 

• Test Case 3 [UCY-FOSS]: Grid-condition prognostic digital twin (developed and pro-

vided by the applicants) verification for utility-scale microgrids. 

As a result of the conducted tests, the performance of the developed voltage state estimator 

was verified to achieve high accuracies <1% error, when supplied with high-resolution data 

(high variability solar and demand data) in a software-in-the-loop approach. In addition, the 

capability of the voltage state estimator to estimate and follow voltage deviations when imput-

ing random grid faults was validated using customised SCADA HIL dashboards. An additional 
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optimisaiton step was carried out in order to further imporve the accuracy of the state estimator. 

For this purpose, the model was trained using synthetic training data (obtained by performing 

a power flow analysis of the developed UCY microgrid PowerFactory model) and historic 

measurements. The evaluation results showed that the devised model, leveraging artificial 

neural networks (ANNs), exhibited high accuracies and was capable to follow in most cases 

the actual voltage profiles even at low bus-bur utilisation fractions.  

The tests further verified the performance accuracy of the optimally constructed net-load fore-

casting model that yielded forecasting errors of approximately 4%. Moreover, the provision of 

grid control functionalities through the real-time simulation model (driven by the implemented 

tools) was emulated using the AIT SGC with SunSpec inverter protocol support. 

Finally, the performed research is expected to enhance the predictive observability and prog-

nostic control of smart grids/microgrids leading to increased grid flexibility for integrating higher 

shares of PV at the distribution network. Actual-life demonstrations of such intelligent tools are 

therefore invaluable for grid operators that aim to optimally orchestrate complex distribution 

system operations at high-RES shares. 
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1 Lab-Access User Project Information 

1.1 Overview 

USER PROJECT 
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AIDGRIDS 
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USER GROUP 
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Bharath-Varsh, Rao (2); Reisenbauer, Sarah (2) 

Organizations, 

Countries 

(1): University of Cyprus, Cyprus; (2): Austrian Institute of Technology, 
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Name AIT Austrian Institute of Technology / University of Cyprus 
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Sarah Reisenbauer | Stay Days 12 | Access Days 05 
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1.2 Research Motivation, Objectives, and Scope 

Research Motivation 

A main challenge in the scope of decarbonising the power sector and aligning with future en-

ergy needs, is to ensure seamless renewable energy sources (RES) integration such as solar 

photovoltaic (PV) in electrical networks, through advanced management and control systems. 

Along this context, the key technological battlegrounds of renewable-powered grids are asso-

ciated with the capabilities of intelligent data-driven systems to monitor in real-time and opti-

mally manage the operation of PV systems (control of smart inverters), based on accurate 

prognostic functionalities. The motivation for carrying out this project has been the current need 

to mitigate stability challenges of smart grids/micro grids at high shares of solar PV, by en-

hancing the predictive observability and control functionalities of supervisory systems through 

artificial intelligence (AI) enabling technologies. 

Scopes and Objectives 

The scope of the project was to validate and demonstrate next-generation AI-driven grid-sup-

portive tools that facilitate the dynamic and cost-effective management of microgrids at high 

shares of solar PV. To this end, the project focused on the development and accelerated vali-

dation of a data-driven voltage state estimator and a grid condition prognostic platform (digital 

twin) that includes a net-load forecasting model that is applicable to microgrids. Moreover, the 

endeavour entailed the validation of the proposed tools' while coupled to grid supportive con-

trols within real-time simulation environments. Specifically, the objectives (O) of the project 

included the: 

[O1] Development and performance evaluation of a data-driven voltage state estimator to 

estimate voltages at bus-bars of the UCY microgrid at high variability solar and demand 

data. 

[O2] Technical validation of voltage state estimator when limiting the location measurements 

of the microgrid modelled smart meters and imputing random grid faults to the RTS 

simulation environment. 

[O3] Development and control-hardware-in-the-loop (CHIL) validation of net-load forecast-

ing tool and grid-prognostic platform to provide active and reactive power control (Volt-

VAr/Q(U) and Volt-Watt/P(U)) when fed with different simulated net-load profiles. 

[O4] Demonstration of voltage state estimator to estimate node voltages of the UCY mi-

crogrid by integrating the digital twin model to the actual environment and employing 

actual smart meter measurements of the microgrid. 

[O5] Technical validation and demonstration of time-ahead grid condition prognosis by inte-

grating the digital twin model to the actual environment and demonstrating control sig-

nalling for voltage regulation (active and reactive power control, Volt-VAr/Q(U) and 

Volt-Watt/P(U)). 

1.3 Structure of the Document 

This document is organised as follows: Section 2  briefly outlines the state-of-the-art/state-of- 

technology that provides the basis of the realised Lab Access (LA) User Project (UP). Section 0 

briefly outlines the performed experiments whereas Section 4 summarises the results and con-

clusions. Potential open issues and suggestions for improvements are discussed in Section 5. 

Finally, additional information is provided in the Appendix A. UCY Microgrid real-time 
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simulation platform. 

Introductory Note:  

This Lab Access project was performed cooperatively, in two phases: A first physical stay of 

staff members of University of Cyprus was held at AIT Austrian Institute of Technology at the 

SmartEST Laboratory in Vienna, Austria. 

A second physical stay was performed 2 weeks later by AIT staff members at University of 

Cyprus in Nicosia at the Low Voltage Experimental Microgrid Lab, Cyprus to implement the 

developed methods on site.   

 

 



INFRAIA-2019-1 

[AIDGRIDS] 12 of 35 

2 State-of-the-Art/State-of-Technology 

As the power sector becomes increasingly complex, intelligent tools such as AI are needed to 

manage systems effectively and derive value from all grid asset generated data [1]. The main 

driver for smart grid AI technologies is the massive amount of high-dimensional data and the 

limitations of traditional modelling technologies in information processing. These systems are 

typically complex and based on big data, creating new challenges and opportunities for testing 

them. Even more challenging is testing the interactions of such software solutions with actual 

field devices such as smart inverters and energy management systems for data-driven control 

applications. Academic institutions and industrial organisations are particularly active in mod-

ernising the distribution grid by applying common AI and techniques for generation and con-

sumption forecasting, estimation of operational state, power grid stability assessment and 

faults detection in the smart grid [2-4].  

Generation and demand forecasting are key enabling AI technologies that facilitate the inte-

gration of renewables into the smart. Over the past years, many short-term load forecasting 

(STLF) studies focused on applying modern techniques [5-6] to map the nonlinear relation-

ships between the load and the relevant parameters. Similarly, for PV generation forecasting 

the most commonly applied supervised learning approaches include deep learning methods 

[7-8]. In an attempt to reduce system complexity and to further enable efficient energy man-

agement, load and RES uncertain variables are combined to form the net-load, which is the 

variable that describes the difference between aggregated consumption and RES generation. 

Even though many studies are focusing on day-ahead PV production forecasting and con-

sumption, the lack of a replicable, scalable and standardised method for validating direct net-

load forecasting tools coupled to distributed energy resource (DER) control remains yet a land-

scape for significant improvements. Efforts in this direction are expected to be intensified as 

renewable-powered microgrids and energy communities increase in both amount and scale. 

The recent advent of AI technologies in smart grids has also been the turning point for including 

distribution level voltage state estimation models. At the transmission system, voltage state 

estimation based on the weighted least squares (WLS) is widely used and applied with relative 

high accuracies [9]. Over the past years, the application of distribution system state estimation 

(DSSE) has gained significant attention, mainly for implementing protection and control tech-

niques envisioned by the smart grid concept. Despite low measurement coverage at the distri-

bution network, pioneer work on DSSE has been conducted by optimising the placement of 

additional system sensors [10] or deriving pseudo-measurements from existing sensor data 

using the underlying system model [11]. However, the lack of information about distribution 

grids, especially at the Low Voltage (LV) level, renders necessary the implementation of accu-

rate state estimation methods that are entirely data-driven. In addition, the extent to which low-

observability state estimation techniques are robust to data availability, measurement loss and 

flexibility to measurement quantities is yet unexplored and can only be examined in an accel-

erated software-in-the-loop approach. Moreover, the deployment of advanced metering infra-

structure in all sections of distribution networks is not cost-effective, hence a model capable to 

estimate electrical parameters with the highest possible accuracy at a designated point of a 

distribution network where measurements are not available is of utmost importance. 

Finally, the implementation of smart grid/microgrid digital twins towards the effective analysis 

of the health and operating conditions of the grid is emerging as a powerful tool for improving 

the safety, reliability and efficiency of smart grids [12-14]. To this end, the proposed work will 

advance in this field by demonstrating a digital twin for predictive simulations and testing both 

real-time and AI-driven applications (voltage state estimation and net-load forecasting).   
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3 Executed Tests and Experiments 

3.1 Test Plan, Standards, Procedures, and Methodology 

Latest grid codes and interconnection standards in Europe demand for PV and DER to provide 
advanced grid support features that include voltage and frequency control, response to abnor-
mal situations (LV/HVRT and FRT). Such advanced grid supportive functions are provided in 
either an autonomous (inverter response to local voltage and frequency conditions) or com-
manded manner (remote control using communication interoperability protocols). 
The test system considered for the real-time simulations and the actual site demonstration is 
the low-voltage (LV) Experimental Nanogrid of UCY-FOSS, as shown in Figure 1 and the 
Smart Energy Campus microgrid of UCY. The nanogrid pilot is a flexible and scalable renew-
able to grid integration infrastructure that includes PV systems, smart inverters, battery stor-
age, smart loads/plugs, smart meters, IoT communication devices and a central energy man-
agement system. The electrical network comprises of an incoming underground feeder that is 
served by a 1 MVA substation. 

 

Figure 1. UCY-FOSS experimental nanogrid schematic diagram. 

In addition, high-resolution data from the UCY Smart Energy Campus microgrid were utilized 

for the voltage state-estimation and net-load forecasting evaluations. At present, the Smart 

Energy Campus is a commercial-scale University campus microgrid that comprises of 15 smart 

buildings and distributed PV systems of capacity 400 kW that are fully monitored and equipped 

with smart meters as part of the implemented advanced metering infrastructure (AMI) for the 

acquisition of high-resolution data, and building management systems (BMS). The data used 

for this investigation corresponded to the historical observations from 15 smart meters that are 

installed at all main buildings and include the main electrical variables of active power (P), 

reactive power (Q), voltage (V) at all phases, currents (I) at all phases and frequency (F). All 

measurements were acquired at a resolution of 1 second and recorded as 1-minute averages.  
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3.1.1 Test Plan 

Three test cases were designed for the project:  

• Test Case 1 [AIT]: Voltage state estimation tool development and validation for utility-

scale microgrids (developed and provided by the applicants) at real-time environments. 

• Test Case 2 [AIT]: Short-term net-load forecasting voltage regulation tool development 

and validation for utility-scale microgrids (developed and provided by the applicants) at 

real-time environments. 

• Test Case 3 [UCY-FOSS]: Grid-condition prognostic digital twin (developed and pro-

vided by the applicants) verification for utility-scale microgrids. 

The summary and schedule of the test plan followed for the project is outlined in Table 1.  

Table 1: Test plan of project lab access. 

Dates Activity 

26/9/2022  

(in-person) 

Kick-off meeting and development of the work plan for the rest 

of the lab access. 

Introduction between the user group and the AIT host mem-

bers. 

User group skill uptake on the Typhoon HIL platform provided 

by AIT. 

27/9/2022 to 30/9/2022 

(in-person) 

Test Case 1 

Development and integration of nanogrid real-time simulation 

model to AIT Typhoon HIL platform. 

Development and validation of voltage state-estimator model. 

Real-time simulations of model carried out for various scenar-

ios by: 

- Applying high variability solar and demand data.  

- Limiting the location measurements of the smart meters.  

- Imputing random grid faults to the microgrid model. 

Recording of the results for the various scenarios tested. 

3/10/2022 

(in-person) 

User group skill uptake on the AIT Smart Grid Controller (SDC) 

and SunSpec inverter protocol provided by AIT. 

4/10/2022 to 7/10/2022 

(in-person) 

Test Case 2 

Development and validation of net-load forecasting model. 

Software-in-the-loop simulation of net-load forecast data-feeds 

for active and reactive power control and advanced functions 

(Volt-VAr/Q(U) and Volt-Watt/P(U)). 

Validation of SunSpec compliant smart inverter model func-

tionalities. 

17/10/2022 User group skill uptake on the UCY microgrid model and 
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(in-person) demonstration site provided by UCY-FOSS. 

18/10/2022 to 27/10/2022 

(in-person) 

Test Case 3 

Development of PowerFactory model for the creation of ma-

chine learning model voltage estimator training datasets. 

Voltage estimator model improvement and validation against 

scenario-based simulations. 

Real-time state-estimator performance verification by employ-

ing actual smart meter and PV system data to the digital twin 

and comparing against the estimated node voltage values. 

28/10/2022 

(in-person) 

Recording of the results and analysis of data obtained for the 

various scenarios tested. 

3.1.2 Methodology 

The overall methodology to run the test cases followed a sequentially structured approach for 

the development and validation of the voltage state estimation and net-load forecasting soft-

ware tools, and the verification of the integrated grid-condition prognostic digital twin. In partic-

ular, the steps involved included the (a) experimental setup and data acquisition, (b) data qual-

ity assessment, (c) development of the optimal machine learning voltage estimation and net 

load forecasting model and (d) performance evaluation.  

Experimental setup and data acquisition: Initially, the schematic diagrams of UCY-FOSS 

nanogrid and UCY campus microgrid (single-line diagram and real-time simulation schematic) 

were prepared and validated prior to their integration to the real-time simulation platforms. 

Minor adjustments to the models were made during the first stage in order to integrate to the 

simulation environment of the AIT Typhoon HIL 604 test-bed and AIT HIL controller.  

Data used for the training and testing step of the voltage estimation and net-load forecasting 

models were exported and checked for data validity and sanity. The historic observations cor-

responded to 1-minute resolution electric and power quality variables acquired from the in-

stalled network of smart meters part of the advanced metering infrastructure (AMI) of the main 

UCY campus. In particular, data from 15 smart meters across the different buildings of the 

UCY campus were utilized that included apparent power (S), active power (P), reactive power 

(Q), voltage (V) at all phases, currents (I) at all phases and frequency (F). All recorded data 

was merged to form a yearly timeseries of the performance of an actual-life microgrid.  

Data quality assessment: Data quality routines were applied to the constructed timeseries in 

order to ensure high quality data prior to the model development procedure. A sequence of 

filtering stages, detection methods, data deletion and inference techniques were applied to the 

given dataset. In case that the invalid data points (i.e., erroneous and missing measurements) 

account for less than 10% of the entire dataset (i.e., the missing data rate threshold for unbi-

ased analysis), the row deletion technique was applied to remove those values from the da-

taset. Otherwise, data inference/imputation techniques were used to back-fill the missing 

measurements. The data cleansing stage resulted to two datasets: 

• Dataset 1: Num. of variables - 102, Time resolution - 1-sec and Period - 26/03/2021 

until 11/09/2022 (21 months). 

• Dataset 2: Num. of variables – 102, Time resolution: 1-min and Period: 26/03/2021 until 

24/10/2022 (21 months). 
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Model development: This step includes an artificial neural network (ANN) development and 

training for both the voltage estimation and net-load forecasting models. A different model was 

used to evaluate each building. The input data for each model corresponds to all available data 

for the same electric variable (e.g., voltage) except that of the building evaluated. The selected 

architecture for the ANN models was 2 hidden layers with 64 neurons and a single output (i.e., 

the variable under assessment). The instances to build the training and testing datasets were 

selected randomly among the whole dataset and the training-testing split was set to 70%-30%. 

A PowerFactory simulation model of the University of Cyprus microgrid was used to generate 

additional training data for the machine learning models. First, the grid model was validated, 

and plausibility checks were performed. A similar procedure was applied to the generated 

training dataset by performing an exploratory data analysis step to determine if the magnitudes 

and distributions of voltages at busbars and active and reactive powers of loads / generators 

were as to be expected.   

Training scenarios were then defined, whereby a scenario was defined as a certain number of 

observable busbars at defined locations in the grid. The potential observable locations were 

those with a meter installed. Five random permutations of these locations were generated for 

a defined number of observable meters. For each of these randomly generated scenarios, 

ANN and Linear Regression (LR) models were trained and optimised in parameters. Models 

were benchmarked against each other to compare their performance. 

The models, trained purely on artificially generated data, were then exposed to measurements 

from reality to transfer them from a synthetic environment to a real application situation and 

monitor their performance. Additionally, both ANN and LR models were tested with measured 

historical data from the meter sites. 

Performance evaluation: Each model addressing the estimation of voltage and forecasting net-

load at a different building was evaluated using the commonly employed metrics of the root 

mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error 

(MAPE), mean bias error (MBE) and coefficient of determination (R2). 

3.2 Test Set-up(s) 

The research infrastructure utilized for the lab access tests was the Smart Electricity Systems 

and Technologies Laboratory (AIT) and the Low Voltage Experimental Microgrid Lab (UCY-

FOSS). The overall hierarchy of the infrastructure used is presented in Figure 2.  

 

Figure 2. Infrastructure setup for validation at AIT and demonstration at UCY-FOSS. 

The following test setups and parameters were utilized to undertake the project activities:  
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• Smart Electricity Systems and Technologies Laboratory (AIT): The real-time simula-
tion and multi-domain co-simulation test-beds at the AIT were used to validate the perfor-
mance of the AI-driven tools against different smart grid scenarios. Specifically, the Ty-
phoon HIL 604 real-time simulator test-bed coupled using analogue and digital I/O ports to 
the AIT HIL control device was used for the model validation tests, see Figure 3.  

 

 
Figure 3. Typhoon HIL real-time simulation test-bed with AIT HIL controller at AIT.  

Tests and sequence:  

(1) Real-time state-estimator performance accuracy validation emulating three days by:  
a. Applying high variability solar and demand data. 
b. Limiting the location measurements of the smart meters. 
c. Imputing random grid faults to the microgrid model. 

Special requirements: Equipment - Real-time simulator test-bed (Typhoon HIL tech-
nology).  

(2) Time-ahead grid condition prognosis for supportive voltage services from PV systems 
(optimal control for voltage regulation in microgrids) validation using an accelerated 
software-in-the-loop approach emulating three days by: 

a. Applying net-load forecast data-feeds different net-load forecasted profiles to 
provide active and reactive power control and advanced functions (Volt-
VAr/Q(U) and Volt-Watt/P(U)). 
Special requirements: Equipment - Real-time simulator test-bed with AIT HIL 
Controller with SunSpec inverter protocol.  

• Low Voltage Experimental Microgrid Lab (UCY-FOSS): The infrastructure at UCY-
FOSS was used to verify and demonstrate the performance of the AI-driven tools and the 
digital twin by integrating the actual UCY microgrid measurements (smart meters) to the 
platform in order to verify the performance accuracy of the models and to demonstrate 
voltage regulation functionalities from simulated controllable PV systems.  
Tests and sequence:  

(1) Real-time state-estimator performance verification by: 
a. Employing actual smart meter and PV system data to the digital twin model and 

comparing against the estimated node voltage values. 
(2) Time-ahead grid condition prognosis demonstration by:  
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a. Employing actual day-ahead net-load forecasts and demonstrating different 
prognostic reactive and active power control functions for voltage regulation (active 

and reactive power control, Volt-VAr/Q(U) and Volt-Watt/P(U)). 
Special requirements: Equipment – UCY microgrid smart meters, test-bench three kWp PV 

system with smart inverter and real-time simulator test-bed (Typhoon HIL RTS). Interoper-

ability - Modbus TCP for all smart meters and SunSpec for PV systems. 

3.2.1 Task 1.1 – State estimator testing 

The state estimator (including the training dataset to train the model) and UCY microgrid net-

work topology (microgrid digitally mapped using OpenDSS and RTS schematic editor), line 

parameters, smart meter measurements, and net-load profiles were initially prepared and val-

idated for correctness and fidelity.  

The state estimator and microgrid model were then integrated to the AIT SMARTEST RTS 

platform (Typhoon RTS technology) in the scope of performing the test sequences of what-if 

scenarios (application of high variability solar and demand data, and grid faults). More specif-

ically, the performance of the state-estimator to yield accurate node voltages, given by the 

RMSE over a daily period, was validated by employing high variability solar and demand data 

(synthetic and actual) emulating three days in an accelerated software-in-the-loop approach.  

Grid faults were further emulated by including a customised grid fault module of several faults 

(the module emulates a selected grid fault using ideal switches, single and multiple phases to 

ground and phase to phase faults are supported) within the simulation model, see Figure 4.  

 

Figure 4. UCY microgrid real-time simulation model including grid fault emulation module.  

Furthermore, data-driven tests were developed and applied to assess the robustness of the 

tool by emulating grid faults, evaluating measurement configurations and reading frequencies 

in low-observability networks.  

Finally, all validation tests provided useful information for further optimising the performance 

of the developed voltage state estimation tool. 
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3.2.2 Task 1.2 – Validation of condition forecasting tool 

The UCY team developed the short-term net-load forecasting tool using the Keras deep learn-

ing interface. The validation tests were performed immediately after the tool was fully inte-

grated into the AIT SMARTEST RTS platform (Typhoon RTS technology), enabling acceler-

ated software-in-the-loop simulations of different voltage regulation functions.  

More specifically, the AIT Smart Grid Converter (SGC) Controller with SunSpec inverter pro-

tocol support was also utilised to test the capabilities of the tool to provide active and reactive 

power control (Volt-VAr/Q(U) and Volt-Watt/P(U)) when fed with different net-load profiles (syn-

thetic and actual). The AIT SGC is capable to perform control-hardware-in-the-loop (CHIL) grid 

integration studies and research within a HIL environment and therefore to overcome the chal-

lenges of smart grid and micro grid integration through a flexible and reconfigurable control 

platform, see Figure 5.  

 

Figure 5. AIT SGC SCADA dashboard for smart inverter interoperability testing.  

3.2.3 Task 2.1 – Digital twin verification at UCY microgrid 

The state-estimator and net-load forecasting tools were the main building blocks of the AI-

driven digital twin of the UCY microgrid (developed using the Typhoon HIL Toolset of microgrid 

model components). The digital twin was connected using Modbus TCP to all smart meters of 

the microgrid in order to visualise the actual real-time measurements alongside the foreseen 

simulation values.  

The digital twin was tested at the FOSS-UCY Low Voltage Experimental Microgrid Lab to verify 

and demonstrate the AI-driven concepts (state-estimation and predictive control) on actual 

measurements (smart meter and inverter measurements integrated to the digital twin using 

Modbus TCP).  

3.3 Data Management and Processing 

The data management and processing strategy applied for the project aimed to manage the 

data used based on findable, accessible, interoperable and re-usable (FAIR) principles during 

the implementation of the project, covering Open Science practices and rendering data “as 

open as possible, as closed as necessary”.  

In particular, the data requirements of the project cover two main data categories:  
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• High-resolution UCY microgrid data acquired over a yearly period from the network of 

smart meters located within the campus. The data were supplied by UCY-FOSS in 

order to perform the power flow analysis and real-time simulation model validations. 

• Power system and real-time simulation models of UCY-FOSS nanogrid and UCY mi-

crogrid. The models and schematics were supplied by UCY-FOSS in order to perform 

the real-time simulations and validate software module performance against actual 

measurements. 

• Experimental data generated/collected by the project that include instantaneous bus 

voltage estimates plot directly using the Typhoon HIL SCADA, and the quasi-steady 

state data such as active powers, and bus voltages that were exported as a csv file to 

excel, and later plot using graphic tools of R and Python.  
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4 Results and Conclusions 

4.1 Discussion of Results 

This section summarises the results obtained for the lab access duration of the AIDGRIDS 

project. The achieved results for the various scenarios are described in the following sections.  

4.1.1 Voltage state estimator development and testing 

The performance validation results obtained for the voltage state estimator (model developed 

using Python programming language) when connected to the UCY microgrid model and oper-

ated with 1-minute high-resolution data (high variability solar and demand data) in a software-

in-the-loop approach, showed high accuracies <1% error. Specifically, the results for all devel-

oped models (all buildings within the microgrid campus) are presented in Table 2. The results 

exhibited a MAPE in the range of 0.13% to 0.46%, which represents an error of around 0.3 to 

1.1 Volts in the estimations of the model. Across all the locations evaluated for the several 

buildings and smart meters, the model showed a mean error of 0.28% for voltage observations. 

Table 2: Evaluation metrics for average phase voltage estimations obtained by the developed state 
estimation model for the different buildings of UCY microgrid. 

Building - Smart Meter (SM) MAE (V) MAPE (%) 

Administration Building - SM1 0.454 0.19 

Sewage Treatment Plant - SM1 0.361 0.16 

Energy Centre - SM1 0.962 0.41 

Energy Centre - SM2 0.737 0.31 

Energy Centre - SM3 0.805 0.35 

Energy Centre - SM4 0.588 0.26 

Energy Centre - SM5 0.914 0.39 

Athletic Sport Centre – SM1 0.295 0.13 

Faculty of Science - SM1 1.072 0.46 

Faculty of Science - SM2 0.525 0.23 

Student Halls - SM1 0.380 0.16 

Social Facility Centre - SM1 0.607 0.26 

Faculty of Economics - SM1 0.803 0.34 

Mean Metrics in tested buildings 0.654 0.28 

 

An illustration of the predictions of the state estimation model is presented in Figure 6 for the 

Administration Building. The data presented in the plots corresponds to a MAE of 0.45 V and 

a MAPE of  0.19%. The development and performance evaluation of the voltage state estima-

tor at different buildings UCY microgrid materialised O1. 
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(a) (b) 

Figure 6. State estimation performance evaluation for average phase voltage at UCY’s Administra-
tion Building: (a) Plot of actual against estimated voltages, and (b) Histogram of error. 

A comparison between the actual and estimated voltage at the point of common coupling 

(PCC) of the microgrid over an extract of 5 000 observations of the test set period is depicted 

in Figure 7. The results showed that the model achieved close aggreement to the actual values 

and was able to follow voltage deviations occuring due to solar irradiance and demand 

variations, and the occurences of grid faults (emulated line to ground faults).  

 

Figure 7. Actual and estimated voltage profiles and errors at UCY microgrid PCC.  

The implemented SCADA HIL dashboard presented in Figure 8, demonstrated the capability 

of the voltage state estimator to estimate and follow voltage deviations when imputing random 

grid faults. The obtained results of this investigation provided evidence towards the finalisation 

of O2.  
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Figure 8. SCADA HIL UCY microgrid dashboard visualising the voltage estimates at the PCC of 
UCY campus and the variations in voltage when applying different grid faults. 

4.1.2 Development and validation of net-load forecasting tool 

The supervised training regime (70:30% random data portion train and test set approach) and 

input feature engineering applied for the development of the optimally performing net-load 

forecasting model yielded the best-performing ANN model that achieved nRMSE of 3.98%. 

The network interconnection diagram of the optimal model is depicted in Figure 9, and it com-

prises of eight input features the historical net-load (𝐻𝑁𝐿), month of the year (𝑀year) day of the 

week (𝐷week), dew point temperature (𝐷𝑃𝑇), real feel temperature (𝑅𝐹), ambient temperature 

(𝑇amb), time of the day (𝑇day) and global horizontal irradiance (𝐺𝐻𝐼), 7 hidden nodes and 1 

output node (net-load).  

 

Figure 9. Network interconnection diagram of developed net-load forecasting model. 

The accuracy of the optimal net-load forecasting model (constructed from the supervised ap-

proach of 70:30% random train and test set) over the test set period for the entire microgrid is 

shown in Figure 10. In more detail, the direct net-load forecasting model achieved a daily mean 

nRMSE of 3.98% for the entire microgrid. Figure 10 further shows the nRMSE values variations 

based on the clearness index (Kt) of the investigated days. A low clearness is exhibited for 

overcast days whereas high index is provided for clear-sky days.  Along this context, the low 

error provided by the model irrespective of daily clearness index demonstrated its applicability 

to microgrids with diverse PV shares.  
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Figure 10. Daily nRMSE of the optimal net-load forecasting model applied to UCY microgrid over 
the test set period. The red dashed line indicates the mean nRMSE. 

The validation of the model to provide grid control functionalities was emulated using the AIT 

SGC with SunSpec inverter protocol support. Figure 11 shows the response obtained from the 

apparatus when setting reactive power set-points. Specifically, Figure 11a shows the applica-

tion of different power factor set-points and the response is monitored at the PQ diagram of 

the SCADA HIL interface presented in Figure 11b.  

 

(a) (b) 

Figure 11. SCADA HIL simulation interface dashboards presenting (a) Front-end interface for active 
and reactive power set-points and (b) Visualising the response at a PQ diagram. 

Similarly, the capability to allow advanced grid supportive control functions such as Volt/Var 

and Volt/Watt was further investigated. Figure 12 shows the results provided when selecting 

the Volt/VAr grid supportive function. The reactive power points obtained when varying the 

voltage of the model were in close alignment to the configured Volt/Var curve as presented in 

Figure 12b.  
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(a) (b) 

Figure 12. SCADA HIL simulation interface dashboards presenting (a) Front-end interface for set-
ting the Volt/Var grid control function and (b) Visualising the response at a Volt/Var char-

acteristic curve and modelled power widgets. 

Furthermore, Figure 13 shows the Volt/Watt response of the model at different voltage settings. 

 

(a) (b) 

Figure 13. SCADA HIL simulation interface dashboards presenting (a) Front-end interface for set-
ting the Volt/Watt grid control function and (b) Visualising the response at a Volt/Watt 

characteristic curve and modelled power widgets. 

Lastly, the results of the CHIL validation of net-load forecasting tool for active and reactive 

power control materialized O3. 

4.1.3 Digital twin verification at UCY microgrid 

To further optimise the performance of the voltage state estimator the machine learning model 

was trained using synthetic training data (obtained by performing a power flow analysis of the 

developed UCY microgrid PowerFactory model). Figure 14 shows the comparison graphs for 

two metrics, the coefficient of determination (R2) and RMSE over all the trained scenarios de-

rived from the training dataset (application of synthetic data). Five scenarios were performed 

per number of observed smart meters. This relates to the x-scale in Figure 14, with the value 

indicating the fraction of all the busbars that were observed in the scenarios. A value of 0.04 

corresponds to 11 observed metering points only. Each dot comprises the average value of 

the metric over all busbar voltages that were predicted. The results showed that the increase 

of the number of bus-bars utilised for the training of the models, directly improved the estima-

tion accuracy. The highest accuracies were reported for the ANN model (RMSE of approxi-

mately 0.00325 p.u.) when 11 metering points were used.  
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Figure 14. Voltage estimation performance given by the R2 and RMSE for the developed linear re-

gression and ANN models for different busbar fractions.  

The application of historical data to the trained models demonstrated that the model could be 

trained with purely synthetic data and exhibit high performance accuracies with the historical 

data (from the artificial world to reality). More specifically, 200 measured values from the his-

toric dataset were randomly selected and measured against predicted values. The results were 

compared for a scenario with a single unobserved smart meter, which was a smart meter for 

a building located at the centre of the feeder. For this investigation, the models trained on 

purely synthetic data were exposed to real measurement values for the first time. The results 

depicted in Figure 15 showed that the ANN model exhibited high accuracies and was capable 

to follow in most cases the actual voltage profiles. The model provided MAE of 0.0036 and 

MBE of 0.0017 when applied to the entire microgrid.   

 
Figure 15. Actual and predicted voltage estimates when applying the ANN model trained with histor-

ical measurements.  

Moreover, the application of historical data to the trained LR model showed a low magnitude 

bias (offset) but otherwise followed the measured value as presented in Figure 16. The low 

magnitude bias was encountered in some scenarios which warranted further inspection of the 

grid model and the effects of the model on the training dataset. The model provided MAE and 

MBE of 0.0014 when applied to the entire microgrid.   
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Figure 16. Actual and predicted voltage estimates when applying the LR model trained with histori-

cal measurements. 

A final optimisation step was applied to the constructed models in order to reduce the exhibited 

bias. The ANN has less bias error but higher absolute error and standard deviation error. Al-

most all the error in the linear regression is a bias of 0.014 p.u. in voltage. Figure 17 shows the 

plots for both the ANN and LR model after subtracting the bias from the predictions and re-

plotting. 

 
(a) 

 
 (b) 

Figure 17. Actual and predicted voltage estimates after reducing bias for (a) ANN model and (b) LR 
model evaluated with historical measurements. 

The demonstration of the state estimator to estimate node voltages of the UCY microgrid by 

integrating the digital twin model to the actual environment and employing actual smart meter 

measurements of the microgrid (trained with synthetic data) finalised O4. 

Finally, the successful transfer of the optimised data-driven models to the real-time simulation 

grid model poses a proof of concept for the developed method and the materialisation of O5. 
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Figure 18 shows that the voltage state estimator was able to estimate the voltage at the PCC 

of the UCY campus microgrid demonstrating high accuracies when compared to the actual 

real-time measurements.  

 

Figure 18. Real-time simulation environment UCY campus microgrid model integrated with voltage 
state estimator.  

Finally, to support the dissemination of the project an event was organised by UCY-FOSS, 

whereby the project results were presented by the AIT team to researchers of UCY.   

 

Figure 19. Project event and presentation delivered by the AIT team to researchers of UCY. 
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4.2 Conclusions 

The AIDGRIDS project focused to validate and demonstrate next-generation AI-driven grid-

supportive tools that facilitate the dynamic and cost-effective management of microgrids at 

high shares of solar PV. In this context, the lab access activities entailed the accelerated vali-

dation of an operational voltage state estimator, a net-load forecasting tool and a grid condition 

prognostic platform (digital twin) applicable to microgrids. Moreover, the endeavour included 

also the demonstration of the capabilities of software AI-driven tools' while coupled to grid 

supportive controls within real-time simulation environments 

The validation results for the developed voltage state estimator that was connected to the UCY 

microgrid model and operated with 1-minute high-resolution data (high variability solar and 

demand data) in a software-in-the-loop approach, showed high accuracies <1% error. In addi-

tion, the capability of the voltage state estimator to estimate and follow voltage deviations when 

imputing random grid faults was presented using customised SCADA HIL dashboards. 

Moreover, an optimally performing net-load forecasting model yielded the best-performing 

ANN model that achieved a nRMSE of 3.98% was developed and validated by applying a 

supervised training regime (70:30% random data portion train and test set approach) and input 

feature engineering. To this end, the validation of the model to provide grid control functional-

ities was emulated using the AIT SGC with SunSpec inverter protocol support.  

To further optimise the performance of the voltage state estimator the machine learning model 

was trained using synthetic training data (obtained by performing a power flow analysis of the 

developed UCY microgrid PowerFactory model). The results showed that the ANN model ex-

hibited high accuracies and was capable to follow in most cases the actual voltage profiles 

even at low bus-bur utilisation fractions.  

At present, billions are being invested in making energy systems more intelligent with smart 

devices and software-based data-driven solutions, and this transformation is only at the begin-

ning. In this domain, the project's expected impacts are categorised as scientific, technologi-

cal/economic and societal: 

• Impacts – Scientific 

Enhance scientific knowledge for testing AI-driven software solutions in smart grids.  

Target groups: Academic community relevant to AI technologies in smart grids.  

Scale and significance: The scientific expertise gained in validating and optimising the AI-

driven state estimator and forecast-based control tool enables the academic community to 

develop new smart grid test procedures for emerging software tools. 

• Impacts - Technological/Economic 

Advances in the field of integrating digital twin solutions for smart grids/microgrids. 

Target groups: Energy and AI industry and utility/microgrid operators.  

Scale and significance: The development of integration procedures for digital twin solutions 

enables the energy and AI R&I industry to become competitive, tackling challenges for 

seamlessly integrating predictive tools and facilitating renewable-powered microgrid devel-

opments. 

• Increase PV competitiveness and shift to green electricity for sustainable economies. 

Target groups: Electricity consumers. 

Scale and significance: Facilitating the seamless integration of high PV shares through 

trust assessment of novel AI-driven control solutions enables reduced green electricity 

costs for consumers, leading to a flexible and reliable electricity system. Especially in the 

case of Cyprus (islanded grid system), it is expected that integrating solar PV shares of 

30% at the grid (EU target by 2030) can reduce electricity cost to €0.02/kWh, according to 
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the IEA World Energy Outlook (2020). At present, the whole-sale electricity in Cyprus is 

€0.12/kWh. 

• Impacts – Societal 

Enhance pathways for renewable-powered microgrids and a clean environment. 

Target groups: General public. 

Scale and significance: The set framework for testing and accelerating the acceptance of 

AI-driven smart grid solutions facilitates the development of renewable-powered mi-

crogrids, leading to CO2 reduction and increasing welfare. 

Finally, the performed research is expected to enhance the predictive observability and prog-

nostic control of smart grids/microgrids leading to increased grid flexibility for integrating higher 

shares of PV at the distribution network. Moreover, the optimally data-driven grid-supportive 

services and testing framework created new knowledge to advance in the field of REs integra-

tion and unlock the potential of data-driven tools. Therefore, intelligent tools are invaluable for 

grid operators and electricity market actors to optimally orchestrate complex distribution sys-

tem operations at high-RES shares. 
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5 Open Issues and Suggestions for Improvements 

The project involved the use of real-time simulation units (Typhoon HIL 604 and 606 devices), 

peripheral connected controllers and high-resolution data acquired from a network of smart 

meters installed within UCY microgrid to validate in an accelerated software-in-the-loop ap-

proach the performance of AI-driven software tools for smart grids.  

To this end, all planned tests to verify and demonstrate the capabilities of the developed tools 

were completed without significant challenges.  

Lastly, the following potential improvements are recommended in order to facilitate the seam-

less integration and transfer of real-time simulation models amongst different real-time simu-

lation test-beds: 

• Use of standardised naming conventions for model input parameters to avoid re-naming 

and mapping.  

• Use of latest version (updated versions) of Python libraries/packages to avoid software 

compatibility issues when Python scripts are integrated to real-time simulation models. 

• Use of core couplings at different segments of large real-time simulation schematics to 

avoid simulation errors and incompatibilities when transfer to previous software releases 

and devices.  
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Appendix A. UCY Microgrid real-time platform  

The UCY microgrid real-time simulation platform is a digital twin model of the Smart Energy 

Campus of UCY, implemented using real-time simulation models (Typhoon HIL technology) 

and integrating smart meter measurements in order to create an integrated real-time grid ob-

servability solution, which monitors the existing smart meters (installed at each University build-

ing) and all PV and storage systems into a singular central platform, see Figure 20. The front-

end dashboard of the platform displays the real-time measurements acquired using Modbus 

TCP from all installed smart meters and weather stations.  

 

Figure 20. UCY microgrid real-time simulation platform dashboard. 

As depicted in Figure 21, the platform is further configured with widgets and masks that include 

set-points for smart inverters and imputation of grid faults (Line-to-line, neutral and earth 

faults). The right-hand side of the dashboard visualises the actual measurements acquired 

from the installed smart meters and the influence of the changes and grid faults to the simu-

lated parameters. The platform is simulated using the Typhoon HIL 604 real-time simulation 

test-bed of UCY-FOSS. 
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Figure 21. UCY-FOSS nanogrid dashboard displaying actual measurements of the pilot and simu-
lated conditions (smart inverter set-points and grid faults). 
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